Sectorial oscillation of linear differential equations and iterated order.
The main purpose of this paper is to consider the analytic solutions of the non-homogeneous linear differential equation , where all coefficients , F ≢ 0 are analytic functions in the unit disc = z∈ℂ: |z|<1. We obtain some results classifying the growth of finite iterated order solutions in terms of the coefficients with finite iterated type. The convergence exponents of zeros and fixed points of solutions are also investigated.
This paper is devoted to considering the complex oscillation of differential polynomials generated by meromorphic solutions of the differential equation where