Displaying 161 – 180 of 221

Showing per page

Symmetry of solutions of semilinear elliptic problems

Jean Van Schaftingen, Michel Willem (2008)

Journal of the European Mathematical Society

We study symmetry properties of least energy positive or nodal solutions of semilinear elliptic problems with Dirichlet or Neumann boundary conditions. The proof is based on symmetrizations in the spirit of Bartsch, Weth and Willem (J. Anal. Math., 2005) together with a strong maximum principle for quasi-continuous functions of Ancona and an intermediate value property for such functions.

Symmetry results for viscosity solutions of fully nonlinear uniformly elliptic equations

Francesca Da Lio, Boyan Sirakov (2007)

Journal of the European Mathematical Society

We study uniformly elliptic fully nonlinear equations F ( D 2 u , D u , u , x ) = 0 , and prove results of Gidas–Ni–Nirenberg type for positive viscosity solutions of such equations. We show that symmetries of the equation and the domain are reflected by the solution, both in bounded and unbounded domains.

Systems of Clairaut type

Shyuichi Izumiya (1993)

Colloquium Mathematicae

A characterization of systems of first order differential equations with (classical) complete solutions is given. Systems with (classical) complete solutions that consist of hyperplanes are also characterized.

The geometry of the space of Cauchy data of nonlinear PDEs

Giovanni Moreno (2013)

Open Mathematics

First-order jet bundles can be put at the foundations of the modern geometric approach to nonlinear PDEs, since higher-order jet bundles can be seen as constrained iterated jet bundles. The definition of first-order jet bundles can be given in many equivalent ways - for instance, by means of Grassmann bundles. In this paper we generalize it by means of flag bundles, and develop the corresponding theory for higher-oder and infinite-order jet bundles. We show that this is a natural geometric framework...

Currently displaying 161 – 180 of 221