Skip to main content (access key 's'), Skip to navigation (access key 'n'), Accessibility information (access key '0')
EuDML - The European Digital Mathematics Library

Login | Register | (Why Register?)

  • Home
  • Advanced Search
  • Browse by Subject
  • Browse by Journals
  • Refs Lookup
  • Subjects
  • 35-XX Partial differential equations
  • 35Bxx Qualitative properties of solutions
  • 35B15 Almost and pseudo-almost periodic solutions

35Bxx Qualitative properties of solutions

  • 35B05 Oscillation, zeros of solutions, mean value theorems, etc.
  • 35B06 Symmetries, invariants, etc.
  • 35B07 Axially symmetric solutions
  • 35B08 Entire solutions
  • 35B09 Positive solutions
  • 35B10 Periodic solutions
  • 35B15 Almost and pseudo-almost periodic solutions
  • 35B20 Perturbations
  • 35B25 Singular perturbations
  • 35B27 Homogenization; equations in media with periodic structure
  • 35B30 Dependence of solutions on initial and boundary data, parameters
  • 35B32 Bifurcation
  • 35B33 Critical exponents
  • 35B34 Resonances
  • 35B35 Stability
  • 35B36 Pattern formation
  • 35B38 Critical points
  • 35B40 Asymptotic behavior of solutions
  • 35B41 Attractors
  • 35B42 Inertial manifolds
  • 35B44 Blow-up
  • 35B45 A priori estimates
  • 35B50 Maximum principles
  • 35B51 Comparison principles
  • 35B53 Liouville theorems, Phragmén-Lindelöf theorems
  • 35B60 Continuation and prolongation of solutions
  • 35B65 Smoothness and regularity of solutions
  • 35B99 None of the above, but in this section
  • Items

All a b c d e f g h i j k l m n o p q r s t u v w x y z Other

Page 1

Displaying 1 – 2 of 2

Showing per page

Caratterizzazione dei polinomi di convoluzione in una variabile a decrescenza rapida, a coefficienti costanti, che hanno soluzioni quasi periodiche per ogni termine noto quasi periodico

Giuliano Bratti (1972)

Rendiconti del Seminario Matematico della Università di Padova

Construction of Approximative and Almost Periodic Solutions of Perturbed Linear Schrödinger and Wave Equations.

J. Bourgain (1996)

Geometric and functional analysis

Currently displaying 1 – 2 of 2

Page 1

EuDML
  • About EuDML initiative
  • Feedback
  •  version 2.1.7