Periodic homogenization of a non-coercive class of functionals.
We introduce a new variational method for the numerical homogenization of divergence form elliptic, parabolic and hyperbolic equations with arbitrary rough (L∞) coefficients. Our method does not rely on concepts of ergodicity or scale-separation but on compactness properties of the solution space and a new variational approach to homogenization. The approximation space is generated by an interpolation basis (over scattered points forming a mesh of resolution H) minimizing the L2 norm of the source...
On donne un développement asymptotique du profil iso pé ri mé tri que de muni d'une métrique riemannienne périodique, et des conséquences pour le problème de la forme d'équilibre des cristaux.
We consider electromagnetic waves propagating in a periodic medium characterized by two small scales. We perform the corresponding homogenization process, relying on the modelling by Maxwell partial differential equations.