Page 1

Displaying 1 – 11 of 11

Showing per page

Mathematical Homogenization in the Modelling of Digestion in the Small Intestine

Masoomeh Taghipoor, Guy Barles, Christine Georgelin, Jean-René Licois, Philippe Lescoat (2013)

MathematicS In Action

Digestion in the small intestine is the result of complex mechanical and biological phenomena which can be modelled at different scales. In a previous article, we introduced a system of ordinary differential equations for describing the transport and degradation-absorption processes during the digestion. The present article sustains this simplified model by showing that it can be seen as a macroscopic version of more realistic models including biological phenomena at lower scales. In other words,...

Mathematical modelling of cable stayed bridges: existence, uniqueness, continuous dependence on data, homogenization of cable systems

Josef Malík (2004)

Applications of Mathematics

A model of a cable stayed bridge is proposed. This model describes the behaviour of the center span, the part between pylons, hung on one row of cable stays. The existence, the uniqueness of a solution of a time independent problem and the continuous dependence on data are proved. The existence and the uniqueness of a solution of a linearized dynamic problem are proved. A homogenizing procedure making it possible to replace cables by a continuous system is proposed. A nonlinear dynamic problem connected...

Mesures semi-classiques et croisement de modes

Clotilde Fermanian-Kammerer, Patrick Gérard (2002)

Bulletin de la Société Mathématique de France

L’étude de la dynamique semi-classique d’électrons dans un cristal débouche naturellement sur le problème de l’évolution des mesures semi-classiques en présence d’un croisement de modes. Dans ce travail, nous étudions un système  2 × 2 qui présente un tel croisement. À cet effet, nous introduisons des mesures semi-classiques à deux échelles qui décrivent comment la transformée de Wigner usuelle se concentre sur l’ensemble des trajectoires rencontrant ce croisement. Puis nous établissons des formules...

Modification of unfolding approach to two-scale convergence

Jan Franců (2010)

Mathematica Bohemica

Two-scale convergence is a powerful mathematical tool in periodic homogenization developed for modelling media with periodic structure. The contribution deals with the classical definition, its problems, the ``dual'' definition based on the so-called periodic unfolding. Since in the case of domains with boundary the unfolding operator introduced by D. Cioranescu, A. Damlamian, G. Griso does not satisfy the crucial integral preserving property, the contribution proposes a modified unfolding operator...

Multiscale convergence and reiterated homogenization of parabolic problems

Anders Holmbom, Nils Svanstedt, Niklas Wellander (2005)

Applications of Mathematics

Reiterated homogenization is studied for divergence structure parabolic problems of the form u ε / t - div a x , x / ε , x / ε 2 , t , t / ε k u ε = f . It is shown that under standard assumptions on the function a ( x , y 1 , y 2 , t , τ ) the sequence { u ϵ } of solutions converges weakly in L 2 ( 0 , T ; H 0 1 ( Ω ) ) to the solution u of the homogenized problem u / t - div ( b ( x , t ) u ) = f .

Multiscale expansion and numerical approximation for surface defects⋆

V. Bonnaillie-Noël, D. Brancherie, M. Dambrine, F. Hérau, S. Tordeux, G. Vial (2011)

ESAIM: Proceedings

This paper is a survey of articles [5, 6, 8, 9, 13, 17, 18]. We are interested in the influence of small geometrical perturbations on the solution of elliptic problems. The cases of a single inclusion or several well-separated inclusions have been deeply studied. We recall here techniques to construct an asymptotic expansion. Then we consider moderately close inclusions, i.e. the distance between the inclusions tends to zero more slowly than their characteristic size. We provide a complete asymptotic...

Multiscale Finite Element approach for “weakly” random problems and related issues

Claude Le Bris, Frédéric Legoll, Florian Thomines (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address multiscale elliptic problems with random coefficients that are a perturbation of multiscale deterministic problems. Our approach consists in taking benefit of the perturbative context to suitably modify the classical Finite Element basis into a deterministic multiscale Finite Element basis. The latter essentially shares the same approximation properties as a multiscale Finite Element basis directly generated on the random problem. The specific reference method that we use is the Multiscale...

Multiscale homogenization of nonlinear hyperbolic-parabolic equations

Abdelhakim Dehamnia, Hamid Haddadou (2023)

Applications of Mathematics

The main purpose of the present paper is to study the asymptotic behavior (when ε 0 ) of the solution related to a nonlinear hyperbolic-parabolic problem given in a periodically heterogeneous domain with multiple spatial scales and one temporal scale. Under certain assumptions on the problem’s coefficients and based on a priori estimates and compactness results, we establish homogenization results by using the multiscale convergence method.

Multiscale modelling of sound propagation through the lung parenchyma

Paul Cazeaux, Jan S. Hesthaven (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop and study numerically a model to describe some aspects of sound propagation in the human lung, considered as a deformable and viscoelastic porous medium (the parenchyma) with millions of alveoli filled with air. Transmission of sound through the lung above 1 kHz is known to be highly frequency-dependent. We pursue the key idea that the viscoelastic parenchyma structure is highly heterogeneous on the small scale ε and use two-scale homogenization techniques to derive effective...

Multiscale stochastic homogenization of convection-diffusion equations

Nils Svanstedt (2008)

Applications of Mathematics

Multiscale stochastic homogenization is studied for convection-diffusion problems. More specifically, we consider the asymptotic behaviour of a sequence of realizations of the form u ε ω / t + 1 / ϵ 3 𝒞 T 3 ( x / ε 3 ) ω 3 · u ε ω - div α T 1 ( x / ε 1 ) ω 1 , T 2 ( x / ε 2 ) ω 2 , t u ε ω = f . It is shown, under certain structure assumptions on the random vector field 𝒞 ( ω 3 ) and the random map α ( ω 1 , ω 2 , t ) , that the sequence { u ϵ ω } of solutions converges in the sense of G-convergence of parabolic operators to the solution u of the homogenized problem u / t - div ( ( t ) u ) = f .

Currently displaying 1 – 11 of 11

Page 1