Page 1

Displaying 1 – 2 of 2

Showing per page

Pattern Formation Induced by Time-Dependent Advection

A. V. Straube, A. Pikovsky (2010)

Mathematical Modelling of Natural Phenomena

We study pattern-forming instabilities in reaction-advection-diffusion systems. We develop an approach based on Lyapunov-Bloch exponents to figure out the impact of a spatially periodic mixing flow on the stability of a spatially homogeneous state. We deal with the flows periodic in space that may have arbitrary time dependence. We propose a discrete in time model, where reaction, advection, and diffusion act as successive operators, and show that...

Patterns and Waves Generated by a Subcritical Instability in Systems with a Conservation Law under the Action of a Global Feedback Control

Y. Kanevsky, A.A. Nepomnyashchy (2010)

Mathematical Modelling of Natural Phenomena

A global feedback control of a system that exhibits a subcritical monotonic instability at a non-zero wavenumber (short-wave, or Turing instability) in the presence of a zero mode is investigated using a Ginzburg-Landau equation coupled to an equation for the zero mode. The method based on a variational principle is applied for the derivation of a low-dimensional evolution model. In the framework of this model the investigation of the system’s dynamics...

Currently displaying 1 – 2 of 2

Page 1