Eigenvalue questions on some quasilinear elliptic problems
Page 1 Next
Poulou, M. N., Stavrakakis, N. M. (2007)
Proceedings of Equadiff 11
Hans-Görg Roos (1978)
Commentationes Mathematicae Universitatis Carolinae
Jiří Cerha (1973)
Časopis pro pěstování matematiky
Giorgio Talenti (1976)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Boccia, Serena, Monsurrò, Sara, Transirico, Maria (2008)
International Journal of Mathematics and Mathematical Sciences
Volker Vogelsang (1974/1975)
Manuscripta mathematica
Smagin, V. V. (2001)
Sibirskij Matematicheskij Zhurnal
Tarama, Shigeo (2007)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Alexander Kiselev, Leonid Ryzhik (2001)
Annales de l'I.H.P. Analyse non linéaire
Elhoussine Azroul, Abdelkrim Barbara, Mohamed Badr Benboubker, Hassane Hjiaj (2014)
Applicationes Mathematicae
We study a class of anisotropic nonlinear elliptic equations with variable exponent p⃗(·) growth. We obtain the existence of entropy solutions by using the truncation technique and some a priori estimates.
L. Tartar (1977/1978)
Séminaire Équations aux dérivées partielles (Polytechnique)
Hugo Beirão Da Veiga, Franco Conti (1972)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Ph. Delanoë (2007)
Annales de l'I.H.P. Analyse non linéaire
Christian G. Simader (1978)
Mathematische Zeitschrift
James M. Greenberg (2001)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present some...
James M. Greenberg (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
In this paper we focus on melting and solidification processes described by phase-field models and obtain rigorous estimates for such processes. These estimates are derived in Section 2 and guarantee the convergence of solutions to non-constant equilibrium patterns. The most basic results conclude with the inequality (E2.31). The estimates in the remainder of Section 2 illustrate what obtains if the initial data is progressively more regular and may be omitted on first reading. We also present...
Mitsuru Sugimoto (1996)
Mathematische Zeitschrift
Nazarov, S.A. (2004)
Journal of Mathematical Sciences (New York)
Evans, Lawrence C. (1993)
Electronic Journal of Differential Equations (EJDE) [electronic only]
M. R. Posteraro (1995)
Annales de l'I.H.P. Analyse non linéaire
Page 1 Next