Das Ausstrahlungsproblem für elliptische Differentialgleichungen in Gebieten mit unbeschränkten Rand.
We consider an initial boundary value problem for the equation . We first prove local and global existence results under suitable conditions on f and g. Then we show that weak solutions decay either algebraically or exponentially depending on the rate of growth of g. This result improves and includes earlier decay results established by the authors.
In this note we consider a strictly convex domain of dimension with smooth boundary and we describe the dispersive and Strichartz estimates for the wave equation with the Dirichlet boundary condition. We obtain counterexamples to the optimal Strichartz estimates of the flat case; we also discuss the some results concerning the dispersive estimates.
In [2] Kenig, Ruiz and Sogge provedprovided , and is a second order operator with constant coefficients such that the second order coefficients are real and nonsingular. As a consequence of [3] we state local versions of this inequality for operators with coefficients. In this paper we show how to apply these local versions to the absence of embedded eigenvalues for potentials in and variants thereof.