Uniqueness and stability properties of monostable pulsating fronts
We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov–Petrovskiĭ–Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability properties and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data. In particular,...