The extended tanh-mehtod for finding traveling wave solutions of nonlinear evolution equations.
We extend, to parabolic equations of the KPP type in periodic media, a result of Bramson which asserts that, in the case of a spatially homogeneous reaction rate, the time lag between the position of an initially compactly supported solution and that of a traveling wave grows logarithmically in time.
We construct travelling wave graphs of the form , , , solutions to the -dimensional forced mean curvature motion () with prescribed asymptotics. For any -homogeneous function , viscosity solution to the eikonal equation , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by . We also describe in terms of a probability measure on .
We study a class of bistable reaction-diffusion systems used to model two competing species. Systems in this class possess two uniform stable steady states representing semi-trivial solutions. Principally, we are interested in the case where the ratio of the diffusion coefficients is small, i.e. in the near-degenerate case. First, limiting arguments are presented to relate solutions to such systems to those of the degenerate case where one species...