The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
In this paper, we investigate the coupling between operator splitting techniques and a time parallelization scheme, the parareal algorithm, as a numerical strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive...
In this paper, we
investigate the coupling between operator splitting techniques and a time
parallelization scheme, the parareal algorithm,
as a numerical
strategy for the simulation of reaction-diffusion equations modelling multi-scale reaction waves.
This type of problems induces peculiar difficulties and potentially large stiffness which stem from the broad spectrum
of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in
the reactive...
This paper is concerned with the traveling wave solutions and asymptotic spreading of delayed lattice differential equations without quasimonotonicity. The spreading speed is obtained by constructing auxiliary equations and using the theory of lattice differential equations without time delay. The minimal wave speed of invasion traveling wave solutions is established by investigating the existence and nonexistence of traveling wave solutions.
Currently displaying 1 –
4 of
4