Solution of the Dirichlet problem for the Laplace equation

Dagmar Medková

Applications of Mathematics (1999)

  • Volume: 44, Issue: 2, page 143-168
  • ISSN: 0862-7940

Abstract

top
For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.

How to cite

top

Medková, Dagmar. "Solution of the Dirichlet problem for the Laplace equation." Applications of Mathematics 44.2 (1999): 143-168. <http://eudml.org/doc/33030>.

@article{Medková1999,
abstract = {For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.},
author = {Medková, Dagmar},
journal = {Applications of Mathematics},
keywords = {Laplace equation; Dirichlet problem; single layer potential; double layer potential; Laplace equation; Dirichlet problem; single layer potential; double layer potential; non-smooth boundary; boundary behaviour},
language = {eng},
number = {2},
pages = {143-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of the Dirichlet problem for the Laplace equation},
url = {http://eudml.org/doc/33030},
volume = {44},
year = {1999},
}

TY - JOUR
AU - Medková, Dagmar
TI - Solution of the Dirichlet problem for the Laplace equation
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 2
SP - 143
EP - 168
AB - For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
LA - eng
KW - Laplace equation; Dirichlet problem; single layer potential; double layer potential; Laplace equation; Dirichlet problem; single layer potential; double layer potential; non-smooth boundary; boundary behaviour
UR - http://eudml.org/doc/33030
ER -

References

top
  1. 10.1016/0022-247X(75)90069-4, Journal of mathematical analysis and application 52 (1975), 415–429. (1975) Zbl0326.45001MR0418658DOI10.1016/0022-247X(75)90069-4
  2. Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
  3. Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
  4. A general form of the covering principle and relative differentiation of additive functions I, Proc. Cambridge Phil. Soc. 41 (1945), 103–110. (1945) MR0012325
  5. A general form of the covering principle and relative differentiation of additive functions II, Proc. Cambridge Phil. Soc. 42 (1946), 1–10. (1946) Zbl0063.00353MR0014414
  6. On the Dirichlet problem in the axiomatic theory of harmonic functions, Nagoya Math. J. 23 (1963), 73–96. (1963) MR0162957
  7. Potential theory and function theory for irregular regions, Leningrad, 1969. (Russian Seminars in mathematics V. A. Steklov Mathematical Institute) (1969) MR0240284
  8. Tricomi potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha, 1988. (Slovak) (1988) 
  9. 10.1016/0022-247X(80)90261-9, Journal of mathematical analysis and applications 77 (1980), 60–72. (1980) MR0591262DOI10.1016/0022-247X(80)90261-9
  10. Non-tangential limits of the double layer potentials, Čas. pěst. mat. 97 (1972), 231–258. (1972) Zbl0237.31012MR0444975
  11. Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
  12. 10.1090/trans2/013/08, Amer. Math. Soc. Transl. 13 (1960), 185–264. (1960) MR0113146DOI10.1090/trans2/013/08
  13. On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19(4) (1986), 60–64. (1986) MR0880678
  14. Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ., Sweden. 
  15. Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden. 
  16. Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden. 
  17. Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
  18. 10.1007/BF01350789, Math. Ann. 177 (1968), 133–142. (1968) MR0227445DOI10.1007/BF01350789
  19. On the semi-Browder spectrum, Studia Math. 123 (1997), 1–13. (1997) MR1438302
  20. Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
  21. 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
  22. Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 239–308. (1986) MR0854323
  23. 10.1016/0022-247X(76)90280-8, Journal of mathematical analysis and applications 55 (1976), 102–111. (1976) MR0411214DOI10.1016/0022-247X(76)90280-8
  24. Boundary Integral Equations, Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27, Viniti, Moskva (Russian), 1988. (1988) 
  25. 10.1023/A:1022818618177, Czechoslov. Math. J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
  26. 10.1023/A:1022447908645, Czechoslov. Math. J. 48 (1998), 768–784. (1998) MR1658269DOI10.1023/A:1022447908645
  27. 10.1023/A:1023267018214, Appl. of Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
  28. Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito, Ann. Scuola norm. Sup. Pisa Cl. Sci. 18 (1964), 27–56. (1964) Zbl0131.11802MR0165073
  29. 10.1007/BF01320705, Integr. equ. oper. theory 29 (1997), 320–338. (1997) Zbl0915.35032MR1477324DOI10.1007/BF01320705
  30. 10.1090/S0002-9947-1947-0020618-0, Trans. Am. Math. Soc. 61 (1947), 418–442. (1947) MR0020618DOI10.1090/S0002-9947-1947-0020618-0
  31. Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
  32. An operator connected with the third boundary value problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
  33. The third boundary value problem in potential theory, Czechoslov. Math. J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
  34. Smooth surfaces with infinite cyclic variation (Czech), Čas. pěst. mat. 96 (1971), 86–101. (1971) MR0284553
  35. Generalized Robin problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
  36. Double layer potential representation of the solution of the Dirichlet problem, Comment. Math. Un. Carolinae 14 (1973), 183–186. (1973) Zbl0255.31009MR0316725
  37. Double layer potentials and Dirichlet problem, Czechoslov. Math. J. 24(99) (1974), 59–73. (1974) MR0348127
  38. 10.1080/00036819208840093, Applicable Analysis 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
  39. 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) MR1378015DOI10.1080/00036819508840313
  40. Principles of Funtional Analysis, Academic Press, London, 1971. (1971) MR0445263
  41. Double layer potentials for a bounded domain with fractal boundary, in Potential Theory. ICPT 94, ed. J. Král, J. Lukeš, I. Netuka, J. Veselý, Walter de Gruyter, Berlin, New York, 1996, pp. 463–471. (1996) Zbl0854.31001MR1404730
  42. Functional Analysis, Springer Verlag, 1965. (1965) Zbl0126.11504
  43. Weakly Differentiable Functions, Springer Verlag, 1989. (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.