Solution of the Dirichlet problem for the Laplace equation
Applications of Mathematics (1999)
- Volume: 44, Issue: 2, page 143-168
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMedková, Dagmar. "Solution of the Dirichlet problem for the Laplace equation." Applications of Mathematics 44.2 (1999): 143-168. <http://eudml.org/doc/33030>.
@article{Medková1999,
abstract = {For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.},
author = {Medková, Dagmar},
journal = {Applications of Mathematics},
keywords = {Laplace equation; Dirichlet problem; single layer potential; double layer potential; Laplace equation; Dirichlet problem; single layer potential; double layer potential; non-smooth boundary; boundary behaviour},
language = {eng},
number = {2},
pages = {143-168},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Solution of the Dirichlet problem for the Laplace equation},
url = {http://eudml.org/doc/33030},
volume = {44},
year = {1999},
}
TY - JOUR
AU - Medková, Dagmar
TI - Solution of the Dirichlet problem for the Laplace equation
JO - Applications of Mathematics
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 44
IS - 2
SP - 143
EP - 168
AB - For open sets with a piecewise smooth boundary it is shown that a solution of the Dirichlet problem for the Laplace equation can be expressed in the form of the sum of the single layer potential and the double layer potential with the same density, where this density is given by a concrete series.
LA - eng
KW - Laplace equation; Dirichlet problem; single layer potential; double layer potential; Laplace equation; Dirichlet problem; single layer potential; double layer potential; non-smooth boundary; boundary behaviour
UR - http://eudml.org/doc/33030
ER -
References
top- 10.1016/0022-247X(75)90069-4, Journal of mathematical analysis and application 52 (1975), 415–429. (1975) Zbl0326.45001MR0418658DOI10.1016/0022-247X(75)90069-4
- Layer potentials on boundaries with corners and edges, Čas. pěst. mat. 113 (1988), 387–402. (1988) MR0981880
- Harmonische Räume und ihre Potentialtheorie, Springer Verlag, Berlin, 1966. (1966) Zbl0142.38402MR0210916
- A general form of the covering principle and relative differentiation of additive functions I, Proc. Cambridge Phil. Soc. 41 (1945), 103–110. (1945) MR0012325
- A general form of the covering principle and relative differentiation of additive functions II, Proc. Cambridge Phil. Soc. 42 (1946), 1–10. (1946) Zbl0063.00353MR0014414
- On the Dirichlet problem in the axiomatic theory of harmonic functions, Nagoya Math. J. 23 (1963), 73–96. (1963) MR0162957
- Potential theory and function theory for irregular regions, Leningrad, 1969. (Russian Seminars in mathematics V. A. Steklov Mathematical Institute) (1969) MR0240284
- Tricomi potentials, Thesis, Mathematical Institute of the Czechoslovak Academy of Sciences, Praha, 1988. (Slovak) (1988)
- 10.1016/0022-247X(80)90261-9, Journal of mathematical analysis and applications 77 (1980), 60–72. (1980) MR0591262DOI10.1016/0022-247X(80)90261-9
- Non-tangential limits of the double layer potentials, Čas. pěst. mat. 97 (1972), 231–258. (1972) Zbl0237.31012MR0444975
- Geometric Measure Theory, Springer-Verlag, 1969. (1969) Zbl0176.00801MR0257325
- 10.1090/trans2/013/08, Amer. Math. Soc. Transl. 13 (1960), 185–264. (1960) MR0113146DOI10.1090/trans2/013/08
- On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries, Vest. Leningrad. Univ. 19(4) (1986), 60–64. (1986) MR0880678
- Estimates for kernels of the inverse operators of the integral equations of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-06, Linköping Univ., Sweden.
- Invertibility of boundary integral operators of elasticity on surfaces with conic points, Report LiTH-MAT-R-91-07, Linköping Univ., Sweden.
- Solvability of a boundary integral equation on a polyhedron, Report LiTH-MAT-R-91-50, Linköping Univ., Sweden.
- Funktionalanalysis, Teubner, Stuttgart, 1975. (1975) Zbl0309.47001MR0482021
- 10.1007/BF01350789, Math. Ann. 177 (1968), 133–142. (1968) MR0227445DOI10.1007/BF01350789
- On the semi-Browder spectrum, Studia Math. 123 (1997), 1–13. (1997) MR1438302
- Integral Operators in Potential Theory. Lecture Notes in Mathematics 823, Springer-Verlag, Berlin, 1980. (1980) MR0590244
- 10.2307/1994580, Trans. Amer. Math. Soc. 125 (1966), 511–547. (1966) MR0209503DOI10.2307/1994580
- Some examples concerning applicability of the Fredholm-Radon method in potential theory, Aplikace matematiky 31 (1986), 239–308. (1986) MR0854323
- 10.1016/0022-247X(76)90280-8, Journal of mathematical analysis and applications 55 (1976), 102–111. (1976) MR0411214DOI10.1016/0022-247X(76)90280-8
- Boundary Integral Equations, Sovremennyje problemy matematiki, fundamental’nyje napravlenija, 27, Viniti, Moskva (Russian), 1988. (1988)
- 10.1023/A:1022818618177, Czechoslov. Math. J. 47 (1997), 651–679. (1997) MR1479311DOI10.1023/A:1022818618177
- 10.1023/A:1022447908645, Czechoslov. Math. J. 48 (1998), 768–784. (1998) MR1658269DOI10.1023/A:1022447908645
- 10.1023/A:1023267018214, Appl. of Math. 43 (1998), 133–155. (1998) MR1609158DOI10.1023/A:1023267018214
- Distribuzioni aventi derivate misure, Insiemi di perimetro localmente finito, Ann. Scuola norm. Sup. Pisa Cl. Sci. 18 (1964), 27–56. (1964) Zbl0131.11802MR0165073
- 10.1007/BF01320705, Integr. equ. oper. theory 29 (1997), 320–338. (1997) Zbl0915.35032MR1477324DOI10.1007/BF01320705
- 10.1090/S0002-9947-1947-0020618-0, Trans. Am. Math. Soc. 61 (1947), 418–442. (1947) MR0020618DOI10.1090/S0002-9947-1947-0020618-0
- Fredholm radius of a potential theoretic operator for convex sets, Čas. pěst. mat. 100 (1975), 374–383. (1975) Zbl0314.31006MR0419794
- An operator connected with the third boundary value problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 462–489. (1972) Zbl0241.31009MR0316733
- The third boundary value problem in potential theory, Czechoslov. Math. J. 2(97) (1972), 554–580. (1972) Zbl0242.31007MR0313528
- Smooth surfaces with infinite cyclic variation (Czech), Čas. pěst. mat. 96 (1971), 86–101. (1971) MR0284553
- Generalized Robin problem in potential theory, Czechoslov. Math. J. 22(97) (1972), 312–324. (1972) Zbl0241.31008MR0294673
- Double layer potential representation of the solution of the Dirichlet problem, Comment. Math. Un. Carolinae 14 (1973), 183–186. (1973) Zbl0255.31009MR0316725
- Double layer potentials and Dirichlet problem, Czechoslov. Math. J. 24(99) (1974), 59–73. (1974) MR0348127
- 10.1080/00036819208840093, Applicable Analysis 45 (1992), 1–4, 135–177. (1992) MR1293594DOI10.1080/00036819208840093
- 10.1080/00036819508840313, Applicable Analysis 56 (1995), 109–115. (1995) MR1378015DOI10.1080/00036819508840313
- Principles of Funtional Analysis, Academic Press, London, 1971. (1971) MR0445263
- Double layer potentials for a bounded domain with fractal boundary, in Potential Theory. ICPT 94, ed. J. Král, J. Lukeš, I. Netuka, J. Veselý, Walter de Gruyter, Berlin, New York, 1996, pp. 463–471. (1996) Zbl0854.31001MR1404730
- Functional Analysis, Springer Verlag, 1965. (1965) Zbl0126.11504
- Weakly Differentiable Functions, Springer Verlag, 1989. (1989) Zbl0692.46022MR1014685
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.