Gewöhnliche Differentialgleichungen für Erzeugende gewisser Bergman-Operatoren.
We consider the initial-value problem for a nonlinear hyperbolic-parabolic system of three coupled partial differential equations of second order describing the process of thermodiffusion in a solid body (in one-dimensional space). We prove global (in time) existence and uniqueness of the solution to the initial-value problem for this nonlinear system. The global existence is proved using time decay estimates for the solution of the associated linearized problem. Next, we prove an energy estimate...
As written in L. Schwartz' book, Heaviside's theory of cables is an important source of the theory of generalized functions. The partial differential equations he discussed were the usual heat equation and the simplest hyperbolic equations of one space dimension, but he had to solve them as evolution equations in the unusual direction of the distance along which the electric signals propagate. Although he obtained explicit expressions of solutions, which were of great economical values, it has not...
We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...
We propose transmission conditions of order 1, 2 and 3 approximating the shielding behaviour of thin conducting curved sheets for the magneto-quasistatic eddy current model in 2D. This model reduction applies to sheets whose thicknesses ε are at the order of the skin depth or essentially smaller. The sheet has itself not to be resolved, only its midline is represented by an interface. The computation is directly in one step with almost no additional cost. We prove the well-posedness w.r.t. to...
An asymptotic analysis is given for the heat equation with mixed boundary conditions rapidly oscillating between Dirichlet and Neumann type. We try to present a general framework where deterministic homogenization methods can be applied to calculate the second term in the asymptotic expansion with respect to the small parameter characterizing the oscillations.
We focus here on the water waves problem for uneven bottoms in the long-wave regime, on an unbounded two or three-dimensional domain. In order to derive asymptotic models for this problem, we consider two different regimes of bottom topography, one for small variations in amplitude, and one for strong variations. Starting from the Zakharov formulation of this problem, we rigorously compute the asymptotic expansion of the involved Dirichlet-Neumann operator. Then, following the global strategy...