Transformations de Laplace sur des sous-variétés de et représentations d’ondes entrantes et sortantes
We construct travelling wave graphs of the form , , , solutions to the -dimensional forced mean curvature motion () with prescribed asymptotics. For any -homogeneous function , viscosity solution to the eikonal equation , we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by . We also describe in terms of a probability measure on .
We study a class of bistable reaction-diffusion systems used to model two competing species. Systems in this class possess two uniform stable steady states representing semi-trivial solutions. Principally, we are interested in the case where the ratio of the diffusion coefficients is small, i.e. in the near-degenerate case. First, limiting arguments are presented to relate solutions to such systems to those of the degenerate case where one species...
The main goal of this work is to present two different problems arising in Fluid Dynamics of perforated domains or porous media. The first problem concerns the compressible flow of an ideal gas through a porous media and our goal is the mathematical derivation of Darcy's law. This is relevant in oil reservoirs, agriculture, soil infiltration, etc. The second problem deals with the incompressible flow of a fluid reacting with the exterior of many packed solid particles. This is related with absorption...
We prove the uniqueness, up to shifts, of pulsating traveling fronts for reaction-diffusion equations in periodic media with Kolmogorov–Petrovskiĭ–Piskunov type nonlinearities. These results provide in particular a complete classification of all KPP pulsating fronts. Furthermore, in the more general case of monostable nonlinearities, we also derive several global stability properties and convergence to pulsating fronts for solutions of the Cauchy problem with front-like initial data. In particular,...