Previous Page 3

Displaying 41 – 47 of 47

Showing per page

Explicit Solutions of Nonlocal Boundary Value Problems, Containing Bitsadze-Samarskii Constraints

Tsankov, Yulian (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 44A35, 35L20, 35J05, 35J25In this paper are found explicit solutions of four nonlocal boundary value problems for Laplace, heat and wave equations, with Bitsadze-Samarskii constraints based on non-classical one-dimensional convolutions. In fact, each explicit solution may be considered as a way for effective summation of a solution in the form of nonharmonic Fourier sine-expansion. Each explicit solution, may be used for numerical calculation of the solutions too.

Exponential-type Nagumo norms and summability of formal solutions of singular partial differential equations

Zhuangchu Luo, Hua Chen, Changgui Zhang (2012)

Annales de l’institut Fourier

In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at ( t , x ) = ( 0 , 0 ) C 2 . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the k -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.

Currently displaying 41 – 47 of 47

Previous Page 3