Approximate solution of the one-dimensional heat conduction equation by the boundary element method
The paper investigates the asymptotic behavior of a steady flow of an incompressible viscous fluid in a two-dimensional infinite pipe with slip boundary conditions and large flux. The convergence of the solutions to data at infinities is examined. The technique enables computing optimal factors of exponential decay at the outlet and inlet of the pipe which are unsymmetric for nonzero fluxes of the flow. As a corollary, the asymptotic structure of the solutions is obtained. The results show strong...
We analyze the accuracy and well-posedness of generalized impedance boundary value problems in the framework of scattering problems from unbounded highly absorbing media. We restrict ourselves in this first work to the scalar problem (E-mode for electromagnetic scattering problems). Compared to earlier works, the unboundedness of the rough absorbing layer introduces severe difficulties in the analysis for the generalized impedance boundary conditions, since classical compactness arguments are no...
2000 Mathematics Subject Classification: 35J05, 35C15, 44P05In this paper, we consider the variations of eigenvalues and eigenfunctions for the Laplace operator with homogeneous Dirichlet boundary conditions under deformation of the underlying domain of definition. We derive recursive formulas for the Taylor coefficients of the eigenvalues as functions of the shape-perturbation parameter and we establish the existence of a set of eigenfunctions that is jointly holomorphic in the spatial and boundary-variation ...