Displaying 81 – 100 of 734

Showing per page

Asymptotically self-similar solutions for the parabolic system modelling chemotaxis

Yūki Naito (2006)

Banach Center Publications

We consider a nonlinear parabolic system modelling chemotaxis u t = · ( u - u v ) , v t = Δ v + u in ℝ², t > 0. We first prove the existence of time-global solutions, including self-similar solutions, for small initial data, and then show the asymptotically self-similar behavior for a class of general solutions.

Asymptotics for multifractal conservation laws

Piotr Biler, Grzegorz Karch, Wojbor Woyczynski (1999)

Studia Mathematica

We study asymptotic behavior of solutions to multifractal Burgers-type equation u t + f ( u ) x = A u , where the operator A is a linear combination of fractional powers of the second derivative - 2 / x 2 and f is a polynomial nonlinearity. Such equations appear in continuum mechanics as models with fractal diffusion. The results include decay rates of the L p -norms, 1 ≤ p ≤ ∞, of solutions as time tends to infinity, as well as determination of two successive terms of the asymptotic expansion of solutions.

Barenblatt solutions and asymptotic behaviour for a nonlinear fractional heat equation of porous medium type

Juan Luis Vázquez (2014)

Journal of the European Mathematical Society

We establish the existence, uniqueness and main properties of the fundamental solutions for the fractional porous medium equation introduced in [51]. They are self-similar functions of the form u ( x , t ) = t α f ( | x | t β ) with suitable and β . As a main application of this construction, we prove that the asymptotic behaviour of general solutions is represented by such special solutions. Very singular solutions are also constructed. Among other interesting qualitative properties of the equation we prove an Aleksandrov reflection...

Behaviour of the first eigenvalue of the p-Laplacian in a domain with a hole

M. Sango (2001)

Colloquium Mathematicae

We investigate the behaviour of a sequence λ s , s = 1,2,..., of eigenvalues of the Dirichlet problem for the p-Laplacian in the domains Ω s , s = 1,2,..., obtained by removing from a given domain Ω a set E s whose diameter vanishes when s → ∞. We estimate the deviation of λ s from the eigenvalue of the limit problem. For the derivation of our results we construct an appropriate asymptotic expansion for the sequence of solutions of the original eigenvalue problem.

Currently displaying 81 – 100 of 734