A comparison theorem for nonlinear operators
We study a nonlinear elliptic system with resonance part and nonlinear boundary conditions on an unbounded domain. Our approach is variational and is based on the well known Landesman-Laser type conditions.
In Albano-Cannarsa [1] the authors proved that, under some conditions, the singularities of the semiconcave viscosity solutions of the Hamilton-Jacobi equation propagate along generalized characteristics. In this note we will provide a simple proof of this interesting result.
In this paper we propose a solution of the Lambertian shape-from-shading (SFS) problem by designing a new mathematical framework based on the notion of viscosity solution. The power of our approach is twofolds: (1) it defines a notion of weak solutions (in the viscosity sense) which does not necessarily require boundary data. Moreover, it allows to characterize the viscosity solutions by their “minimums”; and (2) it unifies the works of [Rouy and Tourin, SIAM J. Numer. Anal.29 (1992) 867–884],...
Integral representation of relaxed energies and of Γ-limits of functionals are obtained when sequences of fields v may develop oscillations and are constrained to satisfy a system of first order linear partial differential equations. This framework includes the treatement of divergence-free fields, Maxwell's equations in micromagnetics, and curl-free fields. In the latter case classical relaxation theorems in W1,p, are recovered.