Displaying 41 – 60 of 84

Showing per page

On the p-biharmonic operator with critical Sobolev exponent

Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)

Applicationes Mathematicae

We study the existence of solutions for a p-biharmonic problem with a critical Sobolev exponent and Navier boundary conditions, using variational arguments. We establish the existence of a precise interval of parameters for which our problem admits a nontrivial solution.

On the smoothness of viscosity solutions of the prescribed Levi-curvature equation

Giovanna Citti, Ermanno Lanconelli, Annamaria Montanari (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper a C -regularity result for the strong viscosity solutions to the prescribed Levi-curvature equation is announced. As an application, starting from a result by Z. Slodkowski and G. Tomassini, the C -solvability of the Dirichlet problem related to the same equation is showed.

On the worst scenario method: Application to a quasilinear elliptic 2D-problem with uncertain coefficients

Petr Harasim (2011)

Applications of Mathematics

We apply a theoretical framework for solving a class of worst scenario problems to a problem with a nonlinear partial differential equation. In contrast to the one-dimensional problem investigated by P. Harasim in Appl. Math. 53 (2008), No. 6, 583–598, the two-dimensional problem requires stronger assumptions restricting the admissible set to ensure the monotonicity of the nonlinear operator in the examined state problem, and, as a result, to show the existence and uniqueness of the state solution....

Régularité microlocale pour des problèmes aux limites non linéaires

Monique Sable-Tougeron (1986)

Annales de l'institut Fourier

On étudie la régularité microlocale de type Sobolev au voisinage du bord d’un ouvert de R n pour des solutions réelles d’un problème aux limites non linéaire non caractéristique dans la zone à comportement linéaire decrite par J. M. Bony : au delà des chocs et en dessous de l’interaction. Pour ces solutions le front d’onde au bord est bien défini et ne contient pas les points de bord elliptiques au sens de Melrose pour le linéarisé sur la solution, si celle-ci vérifie des conditions aux limites régulières....

Stability analysis of phase boundary motion by surface diffusion with triple junction

Harald Garcke, Kazuo Ito, Yoshihito Kohsaka (2009)

Banach Center Publications

The linearized stability of stationary solutions for the surface diffusion flow with a triple junction is studied. We derive the second variation of the energy functional under the constraint that the enclosed areas are preserved and show a linearized stability criterion with the help of the H - 1 -gradient flow structure of the evolution problem and the analysis of eigenvalues of a corresponding differential operator.

Stopping a viscous fluid by a feedback dissipative field: II. The stationary Navier-Stokes problem

Stanislav Nikolaevich Antontsev, Jesús Ildefonso Díaz, Hermenegildo Borges de Oliveira (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We consider a planar stationary flow of an incompressible viscous fluid in a semi-infinite strip governed by the Navier-Stokes system with a feed-back body forces field which depends on the velocity field. Since the presence of this type of non-linear terms is not standard in the fluid mechanics literature, we start by establishing some results about existence and uniqueness of weak solutions. Then, we prove how this fluid can be stopped at a finite distance of the semi-infinite strip entrance by...

Sul problema del rimbalzo in un insieme convesso

Marco Degiovanni (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In the present paper we seek the bounce trajectories in a convex set which assume assigned positions in two fixed time instants. We find sufficient conditions in order to obtain the existence of infinitely many bounce trajectories.

Currently displaying 41 – 60 of 84