Riemann-Hilbert problem and solvability of differential equations.
La résolution d’un système d’EDP non linéaires, de type mixte et sous contraintes, est étudiée dans des ouverts non bornés. Le cas considéré est celui d’un modèle d’écoulement transsonique avec condition d’entropie. Le problème est ramené à l’annulation d’une fonctionnelle positive pénalisée, dans un cadre hilbertien. Des solutions généralisées à près sont obtenues par encadrement de la borne inférieure de la fonctionnelle. Si les contraintes sont omises et sous certaines hypothèses, un algorithme...
In this work two non-local problems for the parabolic-hyperbolic type equation with non-characteristic line of changing type are considered. Unique solvability of these problems is proven. The uniqueness of the solution is proven by the method of energy integrals and the existence is proven by the method of integral equations.
We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition with a locally defined, -bounded function . We prove the existence of a local weak solution to the problem by means of the Rothe method. A uniform a priori estimate for the Rothe approximations in , which is required by the local assumptions on , is derived by...
Systems of mixed hyperbolic-elliptic conservation laws can serve as models for the evolution of a liquid-vapor fluid with possible sharp dynamical phase changes. We focus on the equations of ideal hydrodynamics in the isothermal case and introduce a thermodynamically consistent solution of the Riemann problem in one space dimension. This result is the basis for an algorithm of ghost fluid type to solve the sharp-interface model numerically. In particular the approach allows to resolve phase transitions...
We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell 12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell 14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.
We study a time-delay regularization of the anisotropic diffusion model for image denoising of Perona and Malik [IEEE Trans. Pattern Anal. Mach. Intell12 (1990) 629–639], which has been proposed by Nitzberg and Shiota [IEEE Trans. Pattern Anal. Mach. Intell14 (1998) 826–835]. In the two-dimensional case, we show the convergence of a numerical approximation and the existence of a weak solution. Finally, we show some experiments on images.