Page 1

Displaying 1 – 15 of 15

Showing per page

Classical PLS-spaces: spaces of distributions, real analytic functions and their relatives

Paweł Domański (2004)

Banach Center Publications

This paper is an extended version of an invited talk presented during the Orlicz Centenary Conference (Poznań, 2003). It contains a brief survey of applications to classical problems of analysis of the theory of the so-called PLS-spaces (in particular, spaces of distributions and real analytic functions). Sequential representations of the spaces and the theory of the functor Proj¹ are applied to questions like solvability of linear partial differential equations, existence of a solution depending...

Classification of (1,1) tensor fields and bihamiltonian structures

Francisco Turiel (1996)

Banach Center Publications

Consider a (1,1) tensor field J, defined on a real or complex m-dimensional manifold M, whose Nijenhuis torsion vanishes. Suppose that for each point p ∈ M there exist functions f 1 , . . . , f m , defined around p, such that ( d f 1 . . . d f m ) ( p ) 0 and d ( d f j ( J ( ) ) ) ( p ) = 0 , j = 1,...,m. Then there exists a dense open set such that we can find coordinates, around each of its points, on which J is written with affine coefficients. This result is obtained by associating to J a bihamiltonian structure on T*M.

Currently displaying 1 – 15 of 15

Page 1