-estimates and existence theorems for generalized analytic functions in several variables.
We construct a defining function for a convex domain in Cn that we use to prove that the solution-operator of Henkin-Romanov for the ∂-equation is bounded in L1 and L∞-norms with a weight that reflects not only how near the point is to the boundary of the domain but also how convex the domain is near the point. We refine and localize the weights that Polking uses in [Po] for the same type of domains because they depend only on the Euclidean distance to the boudary and don't take into account the...
Given a 3-dimensional vector field V with coordinates , and that are homogeneous polynomials in the ring k[x,y,z], we give a necessary and sufficient condition for the existence of a Liouvillian first integral of V which is homogeneous of degree 0. This condition is the existence of some 1-forms with coordinates in the ring k[x,y,z] enjoying precise properties; in particular, they have to be integrable in the sense of Pfaff and orthogonal to the vector field V. Thus, our theorem links the existence...