Global analytic hypoellipticity of the ?-Neumann problem on circular domains.
For a bounded domain of , we introduce a notion of «-pseudoconvexity» of new type and prove that for a given -closed -form that is smooth up to the boundary on , and for , there exists a -form smooth up to the boundary on which is a solution of the equation
In this paper, we prove the existence of a global solution to an initial-boundary value problem for 1-D flows of the viscous heat-conducting radiative and reactive gases. The key point here is that the growth exponent of heat conductivity is allowed to be any nonnegative constant; in particular, constant heat conductivity is allowed.