Harmonic Measure in Simply Connected Domains
Let be a bounded simply connected domain in the complex plane, . Let be a neighborhood of , let be fixed, and let be a positive weak solution to the Laplace equation in Assume that has zero boundary values on in the Sobolev sense and extend to by putting on Then there exists a positive finite Borel measure on with support contained in and such thatwhenever If and if is the Green function for with pole at then the measure coincides with harmonic measure...