Displaying 21 – 40 of 57

Showing per page

High-order fractional partial differential equation transform for molecular surface construction

Langhua Hu, Duan Chen, Guo-Wei Wei (2013)

Molecular Based Mathematical Biology

Fractional derivative or fractional calculus plays a significant role in theoretical modeling of scientific and engineering problems. However, only relatively low order fractional derivatives are used at present. In general, it is not obvious what role a high fractional derivative can play and how to make use of arbitrarily high-order fractional derivatives. This work introduces arbitrarily high-order fractional partial differential equations (PDEs) to describe fractional hyperdiffusions. The fractional...

Impulsive Partial Hyperbolic Functional Differential Equations of Fractional Order with State-Dependent Delay

Abbas, Saïd, Benchohra, Mouffak (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 34A37, 34K37, 34K40, 35R11This paper deals with the existence and uniqueness of solutions of two classes of partial impulsive hyperbolic differential equations with fixed time impulses and state-dependent delay involving the Caputo fractional derivative. Our results are obtained upon suitable fixed point theorems.

Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

Nikolova, Yanka, Boyadjiev, Lyubomir (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12.The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.

Interaction of Turing and Hopf Modes in the Superdiffusive Brusselator Model Near a Codimension Two Bifurcation Point

J. C. Tzou, A. Bayliss, B.J. Matkowsky, V.A. Volpert (2010)

Mathematical Modelling of Natural Phenomena

Spatiotemporal patterns near a codimension-2 Turing-Hopf point of the one-dimensional superdiffusive Brusselator model are analyzed. The superdiffusive Brusselator model differs from its regular counterpart in that the Laplacian operator of the regular model is replaced by ∂α/∂|ξ|α, 1 < α < 2, an integro-differential operator that reflects the nonlocal behavior of superdiffusion. The order of the operator, α, is a measure of the rate of ...

Inverse Problem for Fractional Diffusion Equation

Tuan, Vu Kim (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 34K29, 34L15, 35K57, 35R30We prove that by taking suitable initial distributions only finitely many measurements on the boundary are required to recover uniquely the diffusion coefficient of a one dimensional fractional diffusion equation. If a lower bound on the diffusion coefficient is known a priori then even only two measurements are sufficient. The technique is based on possibility of extracting the full boundary spectral data from special lateral measurements.

Local Discontinuous Galerkin methods for fractional diffusion equations

W. H. Deng, J. S. Hesthaven (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the development and analysis of local discontinuous Galerkin methods for fractional diffusion problems in one space dimension, characterized by having fractional derivatives, parameterized by β ∈[1, 2]. After demonstrating that a classic approach fails to deliver optimal order of convergence, we introduce a modified local numerical flux which exhibits optimal order of convergence &#x1d4aa;(hk + 1) uniformly across the continuous range between pure advection (β = 1) and pure diffusion...

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Luchko, Yury (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversaryIn the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative, the Caputo fractional...

Modulation space estimates for Schrödinger type equations with time-dependent potentials

Wei Wei (2014)

Czechoslovak Mathematical Journal

We give a new representation of solutions to a class of time-dependent Schrödinger type equations via the short-time Fourier transform and the method of characteristics. Moreover, we also establish some novel estimates for oscillatory integrals which are associated with the fractional power of negative Laplacian ( - Δ ) κ / 2 with 1 κ 2 . Consequently the classical Hamiltonian corresponding to the previous Schrödinger type equations is studied. As applications, a series of new boundedness results for the corresponding...

New existence and stability results for partial fractional differential inclusions with multiple delay

Saïd Abbas, Wafaa A. Albarakati, Mouffak Benchohra, Mohamed Abdalla Darwish, Eman M. Hilal (2015)

Annales Polonici Mathematici

We discuss the existence of solutions and Ulam's type stability concepts for a class of partial functional fractional differential inclusions with noninstantaneous impulses and a nonconvex valued right hand side in Banach spaces. An example is provided to illustrate our results.

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

MSC 2010: 34A08 (main), 34G20, 80A25The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar anomalous diffusion...

Numerical solutions to integral equations equivalent to differential equations with fractional time

Bartosz Bandrowski, Anna Karczewska, Piotr Rozmej (2010)

International Journal of Applied Mathematics and Computer Science

This paper presents an approximate method of solving the fractional (in the time variable) equation which describes the processes lying between heat and wave behavior. The approximation consists in the application of a finite subspace of an infinite basis in the time variable (Galerkin method) and discretization in space variables. In the final step, a large-scale system of linear equations with a non-symmetric matrix is solved with the use of the iterative GMRES method.

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 33E12, 33C60, 35R11In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

On the controllability of fractional dynamical systems

Krishnan Balachandran, Jayakumar Kokila (2012)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the controllability of linear and nonlinear fractional dynamical systems in finite dimensional spaces. Sufficient conditions for controllability are obtained using Schauder's fixed point theorem and the controllability Grammian matrix which is defined by the Mittag-Leffler matrix function. Examples are given to illustrate the effectiveness of the theory.

On the fractional differentiability of the spatial derivatives of weak solutions to nonlinear parabolic systems of higher order

Roberto Amato (2016)

Czechoslovak Mathematical Journal

We are concerned with the problem of differentiability of the derivatives of order m + 1 of solutions to the “nonlinear basic systems” of the type ( - 1 ) m | α | = m D α A α ( D ( m ) u ) + u t = 0 in Q . We are able to show that D α u L 2 ( - a , 0 , H ϑ ( B ( σ ) , N ) ) , | α | = m + 1 , for ϑ ( 0 , 1 / 2 ) and this result suggests that more regularity is not expectable.

Currently displaying 21 – 40 of 57