The search session has expired. Please query the service again.
Displaying 101 –
120 of
149
We consider the Fourier first boundary value problem for an infinite system of weakly coupled nonlinear differential-functional equations. To prove the existence and uniqueness of solution, we apply a monotone iterative method using J. Szarski's results on differential-functional inequalities and a comparison theorem for infinite systems.
In this paper we study the existence of classical solutions for a class of abstract neutral integro-differential equation with unbounded delay. A concrete application to partial neutral integro-differential equations is considered.
We study the existence of mild solutions for a class of impulsive fractional partial neutral integro-differential inclusions with state-dependent delay. We assume that the undelayed part generates an α-resolvent operator and transform it into an integral equation. Sufficient conditions for the existence of solutions are derived by means of the fixed point theorem for discontinuous multi-valued operators due to Dhage and properties of the α-resolvent operator. An example is given to illustrate the...
The Cauchy problem for an infinite system of parabolic type equations is studied. General operators of parabolic type of second order with variable coefficients are considered and the system is weakly coupled. We prove the existence and uniqueness of a bounded solution under Carathéodory type conditions and its differentiability, as well as the existence and uniqueness in the class of functions satisfying a natural growth condition. Both results are obtained by the fixed point method.
We prove the existence of solutions to a differential-functional system which describes a wide class of multi-component populations dependent on their past time and state densities and on their total size. Using two different types of the Hale operator, we incorporate in this model classical von Foerster-type equations as well as delays (past time dependence) and integrals (e.g. influence of a group of species).
We consider the Cauchy problem for nonlinear parabolic equations with functional dependence. We prove Schauder-type existence results for unbounded solutions. We also prove existence of maximal solutions for a wide class of differential functional equations.
In this work we study a nonlocal reaction-diffusion equation arising in population
dynamics. The integral term in the nonlinearity describes nonlocal stimulation of
reproduction. We prove existence of travelling wave solutions by the Leray-Schauder method
using topological degree for Fredholm and proper operators and special a priori estimates
of solutions in weighted Hölder spaces.
Currently displaying 101 –
120 of
149