Chaotic dynamics and nonlinear feedback control
We show that the set of conical points of a rational function of the Riemann sphere supports at most one conformal measure. We then study the problem of existence of such measures and their ergodic properties by constructing Markov partitions on increasing subsets of sets of conical points and by applying ideas of the thermodynamic formalism.
We show that if is a discrete subgroup of the group of the isometries of , and if is a representation of into the group of the isometries of , then any -equivariant map extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable -equivariant...
We elaborate a method allowing the determination of 0-1 matrices corresponding to dynamics of the interval having stable, 2k-periodic orbits, k belonging to N. By recurrence on the finite dimensional matrices, we establish the form of the infinite matrices (k --> ∞).
Asymptotic properties of various semidynamical systems can be examined by means of continuous subadditive processes. To investigate such processes we consider different types of exponents: characteristic, central, singular and global exponents and we study their properties. We derive formulae for central and singular exponents and show that they provide upper bounds for characteristic exponents. The concept of conjugate processes introduced in this paper allows us to find lower bounds for characteristic...