Displaying 21 – 40 of 83

Showing per page

On fixed points of C 1 extensions of expanding maps in the unit disc

Roberto Tauraso (1994)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Using a result due to M. Shub, a theorem about the existence of fixed points inside the unit disc for C 1 extensions of expanding maps defined on the boundary is established. An application to a special class of rational maps on the Riemann sphere and some considerations on ergodic properties of these maps are also made.

On heredity of strongly proximal actions

C. Robinson Edward Raja (2003)

Archivum Mathematicum

We prove that action of a semigroup T on compact metric space X by continuous selfmaps is strongly proximal if and only if T action on 𝒫 ( X ) is strongly proximal. As a consequence we prove that affine actions on certain compact convex subsets of finite-dimensional vector spaces are strongly proximal if and only if the action is proximal.

On invariant measures for the tend map.

Francesc Bofill (1988)

Stochastica

The bifurcation structure of a one parameter dependent piecewise linear population model is described. An explicit formula is given for the density of the unique invariant absolutely continuous probability measure mub for each parameter value b. The continuity of the map b --> mub is established.

On iterates of strong Feller operators on ordered phase spaces

Wojciech Bartoszek (2004)

Colloquium Mathematicae

Let (X,d) be a metric space where all closed balls are compact, with a fixed σ-finite Borel measure μ. Assume further that X is endowed with a linear order ⪯. Given a Markov (regular) operator P: L¹(μ) → L¹(μ) we discuss the asymptotic behaviour of the iterates Pⁿ. The paper deals with operators P which are Feller and such that the μ-absolutely continuous parts of the transition probabilities P ( x , · ) x X are continuous with respect to x. Under some concentration assumptions on the asymptotic transition probabilities...

On maximizing measures of homeomorphisms on compact manifolds

Fábio Armando Tal, Salvador Addas-Zanata (2008)

Fundamenta Mathematicae

We prove that given a compact n-dimensional connected Riemannian manifold X and a continuous function g: X → ℝ, there exists a dense subset of the space of homeomorphisms of X such that for all T in this subset, the integral X g d μ , considered as a function on the space of all T-invariant Borel probability measures μ, attains its maximum on a measure supported on a periodic orbit.

On measure theoretical analogues of the Takesaki structure theorem for type III factors

Alexandre Danilenko, Toshihiro Hamachi (2000)

Colloquium Mathematicae

The orbit equivalence of type I I I 0 ergodic equivalence relations is considered. We show that it is equivalent to the outer conjugacy problem for the natural trace-scaling action of a countable dense ℝ-subgroup by automorphisms of the Radon-Nikodym skew product extensions of these relations. A similar result holds for the weak equivalence of arbitrary type I I I 0 cocycles with values in Abelian groups.

On new spectral multiplicities for ergodic maps

Alexandre I. Danilenko (2010)

Studia Mathematica

It is shown that each subset of positive integers that contains 2 is realizable as the set of essential values of the multiplicity function for the Koopman operator of some weakly mixing transformation.

On physical measures for Cherry flows

Liviana Palmisano (2016)

Fundamenta Mathematicae

Studies of the physical measures for Cherry flows were initiated in Saghin and Vargas (2013). While the non-positive divergence case was resolved, the positive divergence case still lacked a complete description. Some conjectures were put forward. In this paper we make a contribution in this direction. Namely, under mild technical assumptions we solve some conjectures stated in Saghin and Vargas (2013) by providing a description of the physical measures for Cherry flows in the positive divergence...

On solvability of the cohomology equation in function spaces

Ryotaro Sato (2003)

Studia Mathematica

Let T be an endomorphism of a probability measure space (Ω,𝓐,μ), and f be a real-valued measurable function on Ω. We consider the cohomology equation f = h ∘ T - h. Conditions for the existence of real-valued measurable solutions h in some function spaces are deduced. The results obtained generalize and improve a recent result of Alonso, Hong and Obaya.

Currently displaying 21 – 40 of 83