The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
For a class of -interval exchange transformations, which we call the symmetric class, we define a new self-dual induction process in which the system is successively induced on a union of sub-intervals. This algorithm gives rise to an underlying graph structure which reflects the dynamical behavior of the system, through the Rokhlin towers of the induced maps. We apply it to build a wide assortment of explicit examples on four intervals having different dynamical properties: these include the first...
This mainly expository article is devoted to recent advances in the study of dynamical aspects of the Cuntz algebras 𝓞ₙ, n < ∞, via their automorphisms and, more generally, endomorphisms. A combinatorial description of permutative automorphisms of 𝓞ₙ in terms of labelled, rooted trees is presented. This in turn gives rise to an algebraic characterization of the restricted Weyl group of 𝓞ₙ. It is shown how this group is related to certain classical dynamical systems on the Cantor set. An identification...
Let f be a continuous map of the circle or the interval I into itself, piecewise , piecewise monotone with finitely many intervals of monotonicity and having positive entropy h. For any ε > 0 we prove the existence of at least periodic points of period with large derivative along the period, for some subsequence of natural numbers. For a strictly monotone map f without critical points we show the existence of at least such points.
Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.
We study asymptotic properties of eigenfunctions of the Laplacian on compact Riemannian surfaces of Anosov type (for instance negatively curved surfaces). More precisely, we give an answer to a question of Anantharaman and Nonnenmacher [4] by proving that the Kolmogorov-Sinai entropy of a semiclassical measure for the geodesic flow is bounded from below by half of the Ruelle upper bound. (This text has been written for the proceedings of the Journées EDP (Port d’Albret-June, 7-11 2010))
A number of recent works have sought to generalize the Kolmogorov-Sinai entropy of probability-preserving transformations to the setting of Markov operators acting on the integrable functions on a probability space (X,μ). These works have culminated in a proof by Downarowicz and Frej that various competing definitions all coincide, and that the resulting quantity is uniquely characterized by certain abstract properties.
On the other hand, Makarov has shown that this 'operator...
We consider scalar reaction-diffusion equations on bounded and extended domains, both with the autonomous and time-periodic nonlinear term. We discuss the meaning and implications of the ergodic Poincaré-Bendixson theorem to dynamics. In particular, we show that in the extended autonomous case, the space-time topological entropy is zero. Furthermore, we characterize in the extended nonautonomous case the space-time topological and metric entropies as entropies of a pair of commuting planar homeomorphisms....
Topological and metric entropy pairs of ℤ²-actions are defined and their properties are investigated, analogously to ℤ-actions. In particular, mixing properties are studied in connection with entropy pairs.
We study the notion of ε-independence of a process on finitely (or countably) many states and that of ε-independence between two processes defined on the same measure preserving transformation. For that we use the language of entropy. First we demonstrate that if a process is ε-independent then its ε-independence from another process can be verified using a simplified condition. The main direction of our study is to find natural examples of ε-independence. In case of ε-independence of one process,...
We give an introduction to adelic mixing and its applications for mathematicians knowing about the mixing of the geodesic flow on hyperbolic surfaces. We focus on the example of the Hecke trees in the modular surface.
Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...
Currently displaying 1 –
20 of
76