Given a rational function on of degree at least 2 with coefficients in a number field , we show that for each place of , there is a unique probability measure on the Berkovich space such that if is a sequence of points in whose -canonical heights tend to zero, then the ’s and their -conjugates are equidistributed with respect to .The proof uses a polynomial lift of to construct a two-variable Arakelov-Green’s function for each . The measure is obtained by taking the...