The existence of an a.c.i.p.m. for an expanding map of the interval; the study of a counterexample
It is known that there is a comeagre set of mutually conjugate measure preserving homeomorphisms of Cantor space equipped with the coinflipping probability measure, i.e., Haar measure. We show that the generic measure preserving homeomorphism is moreover conjugate to all of its powers. It follows that the generic measure preserving homeomorphism extends to an action of (ℚ, +) by measure preserving homeomorphisms, and, in fact, to an action of the locally compact ring 𝔄 of finite adèles. ...
In the sense of the Baire Category Theorem we show that the generic transformation T has roots of all orders (RAO theorem). The argument appears novel in that it proceeds by establishing that the set of such T is not meager - and then appeals to a Zero-One Law (Lemma 2). On the group Ω of (invertible measure-preserving) transformations, §D shows that the squaring map p: S → S^{2} is topologically complex in that both the locally-dense and locally-lacunary points of p are dense (Theorem 23). The...
Bowen’s notion of sofic entropy is a powerful invariant for classifying probability-preserving actions of sofic groups. It can be defined in terms of the covering numbers of certain metric spaces associated to such an action, the ‘model spaces’. The metric geometry of these model spaces can exhibit various interesting features, some of which provide other invariants of the action. This paper explores an approximate connectedness property of the model spaces, and uses it give a new proof that certain...
In a recent paper of Feng and Sidorov they show that for β ∈ (1,(1+√5)/2) the set of β-expansions grows exponentially for every x ∈ (0,1/(β-1)). In this paper we study this growth rate further. We also consider the set of β-expansions from a dimension theory perspective.
The classical output theorem for the M/M/1 queue, due to Burke (1956), states that the departure process from a stationary M/M/1 queue, in equilibrium, has the same law as the arrivals process, that is, it is a Poisson process. We show that the associated measure-preserving transformation is metrically isomorphic to a two-sided Bernoulli shift. We also discuss some extensions of Burke's theorem where it remains an open problem to determine if, or under what conditions, the analogue of this result...
Two invertible dynamical systems (X,,μ,T) and (Y,,ν,S), where X and Y are Polish spaces and Borel probability spaces and T, S are measure preserving homeomorphisms of X and Y, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping ϕ from a subset X₀ of X of measure one onto a subset Y₀ of Y of full measure such that (1) is continuous in the relative topology on X₀ and is continuous in the relative topology on Y₀, (2) for μ-a.e. x ∈ X. (X,,μ,T) and...
Let T be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform . We prove that weak and strong convergence are equivalent, and in a reflexive space also is equivalent to the convergence. We also show that (which converges on (I-T)X) is precisely the infinitesimal generator of the semigroup .
Iterated function systems with place-dependent probabilities are considered. It is shown that the rate of convergence of transition probabilities to a unique invariant measure is geometric.
For a non-compact hyperbolic surface M of finite area, we study a certain Poincaré section for the geodesic flow. The canonical, non-invertible factor of the first return map to this section is shown to be pointwise dual ergodic with return sequence (aₙ) given by aₙ = π/(4(Area(M) + 2π)) · n/(log n). We use this result to deduce that the section map itself is rationally ergodic, and that the geodesic flow associated to M is ergodic with respect to the Liouville measure. ...
We present an explicit formula for the Ruelle rotation of a nonsingular Killing vector field of a closed, oriented, Riemannian 3-manifold, with respect to Riemannian volume.
For n ≥ 1, given an n-dimensional locally (n-1)-connected compact space X and a finite Borel measure μ without atoms at isolated points, we prove that for a generic (in the uniform metric) continuous map f:X → X, the set of points which are chain recurrent under f has μ-measure zero. The same is true for n = 0 (skipping the local connectedness assumption).