Numeration systems, substitution dynamical systems and Rauzy fractals.
The mathematical model of a ball-type vibration absorber represents a non-linear differential system which includes non-holonomic constraints. When a random ambient excitation is taken into account, the system has to be treated as a stochastic deferential equation. Depending on the level of simplification, an analytical solution is not practicable and numerical solution procedures have to be applied. The contribution presents a simple stochastic analysis of a particular resonance effect which can...
Although Sarnak's conjecture holds for compact group rotations (irrational rotations, odometers), it is not even known whether it holds for all Jewett-Krieger models of such rotations. In this paper we show that it does, as long as the model is at the same a topological extension, via the same map that establishes the isomorphism, of an equicontinuous model. In particular, we recover (after [AKL]) that regular Toeplitz systems satisfy Sarnak's conjecture, and, as another consequence, so do...
The paper answers some questions asked by Sharkovski concerning the map F:(u,v) ↦ (u(4-u-v),uv) of the triangle Δ = u,v ≥ 0: u+v ≤ 4. We construct an absolutely continuous σ-finite invariant measure for F. We also prove the following strange phenomenon. The preimages of side I = Δ ∩ v=0 form a dense subset of Δ and there is another dense set Λ consisting of points whose orbits approach the interval I but are not attracted by I.
We show the existence of invariant measures for Markov-Feller operators defined on completely regular topological spaces which satisfy the classical positivity condition.
We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then for Lebesgue-a.e. x.
This paper gives a stochastic representation in spectral terms for the absorption time T of a finite Markov chain which is irreducible and reversible outside the absorbing point. This yields quantitative informations on the parameters of a similar representation due to O'Cinneide for general chains admitting real eigenvalues. In the discrete time setting, if the underlying Dirichlet eigenvalues (namely the eigenvalues of the Markov transition operator restricted to the functions vanishing on...
We describe two methods of obtaining analytic flows on the torus which are disjoint from dynamical systems induced by some classical stationary processes.
We continue the study of topological properties of the group Homeo(X) of all homeomorphisms of a Cantor set X with respect to the uniform topology τ, which was started by Bezuglyi, Dooley, Kwiatkowski and Medynets. We prove that the set of periodic homeomorphisms is τ-dense in Homeo(X) and deduce from this result that the topological group (Homeo(X),τ) has the Rokhlin property, i.e., there exists a homeomorphism whose conjugacy class is τ-dense in Homeo(X). We also show that for any homeomorphism...
We consider dependence coefficients for stationary Markov chains. We emphasize on some equivalencies for reversible Markov chains. We improve some known results and provide a necessary condition for Markov chains based on Archimedean copulas to be exponential ρ-mixing. We analyse the example of the Mardia and Frechet copula families using small sets.
We consider zero entropy -diffeomorphisms on compact connected -manifolds. We introduce the notion of polynomial growth of the derivative for such diffeomorphisms, and study it for diffeomorphisms which additionally preserve a smooth measure. We show that if a manifold M admits an ergodic diffeomorphism with polynomial growth of the derivative then there exists a smooth flow with no fixed point on M. Moreover, if dim M = 2, then necessarily M = ² and the diffeomorphism is -conjugate to a skew...
In this paper we continue the investigation of [7]-[10] concerning the actions of discrete subgroups of Lie groups on compact manifolds.
Special flows over some locally rigid automorphisms and under L² ceiling functions satisfying a local L² Denjoy-Koksma type inequality are considered. Such flows are proved to be disjoint (in the sense of Furstenberg) from mixing flows and (under some stronger assumption) from weakly mixing flows for which the weak closure of the set of all instances consists of indecomposable Markov operators. As applications we prove that ∙ special flows built over ergodic interval exchange...
We compare self-joining and embeddability properties. In particular, we prove that a measure preserving flow with T₁ ergodic is 2-fold quasi-simple (resp. 2-fold distally simple) if and only if T₁ is 2-fold quasi-simple (resp. 2-fold distally simple). We also show that the Furstenberg-Zimmer decomposition for a flow with T₁ ergodic with respect to any flow factor is the same for and for T₁. We give an example of a 2-fold quasi-simple flow disjoint from simple flows and whose time-one map is...