Page 1

Displaying 1 – 9 of 9

Showing per page

Generic measures for geodesic flows on nonpositively curved manifolds

Yves Coudène, Barbara Schapira (2014)

Journal de l’École polytechnique — Mathématiques

We study the generic invariant probability measures for the geodesic flow on connected complete nonpositively curved manifolds. Under a mild technical assumption, we prove that ergodicity is a generic property in the set of probability measures defined on the unit tangent bundle of the manifold and supported by trajectories not bounding a flat strip. This is done by showing that Dirac measures on periodic orbits are dense in that set.In the case of a compact surface, we get the following sharp result:...

Generic points in the cartesian powers of the Morse dynamical system

Emmanuel Lesigne, Anthony Quas, Máté Wierdl (2003)

Bulletin de la Société Mathématique de France

The symbolic dynamical system associated with the Morse sequence is strictly ergodic. We describe some topological and metrical properties of the Cartesian powers of this system, and some of its other self-joinings. Among other things, we show that non generic points appear in the fourth power of the system, but not in lower powers. We exhibit various examples and counterexamples related to the property of weak disjointness of measure preserving dynamical systems.

Generic properties of learning systems

Tomasz Szarek (2000)

Annales Polonici Mathematici

It is shown that the set of learning systems having a singular stationary distribution is generic in the family of all systems satisfying the average contractivity condition.

Gibbs states for non-irreducible countable Markov shifts

Andrei E. Ghenciu, Mario Roy (2013)

Fundamenta Mathematicae

We study Markov shifts over countable (finite or countably infinite) alphabets, i.e. shifts generated by incidence matrices. In particular, we derive necessary and sufficient conditions for the existence of a Gibbs state for a certain class of infinite Markov shifts. We further establish a characterization of the existence, uniqueness and ergodicity of invariant Gibbs states for this class of shifts. Our results generalize the well-known results for finitely irreducible Markov shifts.

Greedy and lazy representations in negative base systems

Tomáš Hejda, Zuzana Masáková, Edita Pelantová (2013)

Kybernetika

We consider positional numeration systems with negative real base - β , where β > 1 , and study the extremal representations in these systems, called here the greedy and lazy representations. We give algorithms for determination of minimal and maximal ( - β ) -representation with respect to the alternate order. We also show that both extremal representations can be obtained as representations in the positive base β 2 with a non-integer alphabet. This enables us to characterize digit sequences admissible as greedy...

Currently displaying 1 – 9 of 9

Page 1