The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
En topologie dynamique, une famille classique de systèmes est celle formée par les rotations minimales. La classe des nilsystèmes et de leurs limites projectives en est une extension naturelle. L’étude de ces systèmes est ancienne mais connaît actuellement un renouveau à cause de ses applications, à la fois à la théorie ergodique et en théorie additive des nombres.
Les rotations minimales sont caractérisées par le fait que la relation de proximalité régionale est l’égalité. Nous introduisons une...
The dynamics of singular Lagrangean systems is described by a distribution the rank of which is greater than one and may be non-constant. Consequently, these systems possess two kinds of conserved functions, namely, functions which are constant along extremals (constants of the motion), and functions which are constant on integral manifolds of the corresponding distribution (first integrals). It is known that with the help of the (First) Noether theorem one gets constants of the motion. In this...
Currently displaying 1 –
3 of
3