Page 1

Displaying 1 – 5 of 5

Showing per page

For almost every tent map, the turning point is typical

Henk Bruin (1998)

Fundamenta Mathematicae

Let T a be the tent map with slope a. Let c be its turning point, and μ a the absolutely continuous invariant probability measure. For an arbitrary, bounded, almost everywhere continuous function g, it is shown that for almost every a, ʃ g d μ a = l i m n 1 n i = 0 n - 1 g ( T a i ( c ) ) . As a corollary, we deduce that the critical point of a quadratic map is generically not typical for its absolutely continuous invariant probability measure, if it exists.

Forcing relation on interval patterns

Jozef Bobok (2005)

Fundamenta Mathematicae

We consider-without restriction to the piecewise monotone case-a forcing relation on interval (transitive, roof, bottom) patterns. We prove some basic properties of this type of forcing and explain when it is a partial ordering. Finally, we show how our approach relates to the results known from the literature.

Forcing relation on minimal interval patterns

Jozef Bobok (2001)

Fundamenta Mathematicae

Let ℳ be the set of pairs (T,g) such that T ⊂ ℝ is compact, g: T → T is continuous, g is minimal on T and has a piecewise monotone extension to convT. Two pairs (T,g),(S,f) from ℳ are equivalent if the map h: orb(minT,g) → orb(minS,f) defined for each m ∈ ℕ₀ by h ( g m ( m i n T ) ) = f m ( m i n S ) is increasing on orb(minT,g). An equivalence class of this relation-a minimal (oriented) pattern A-is exhibited by a continuous interval map f:I → I if there is a set T ⊂ I such that (T,f|T) = (T,f) ∈ A. We define the forcing relation on...

Currently displaying 1 – 5 of 5

Page 1