Page 1

Displaying 1 – 16 of 16

Showing per page

On conjugacy equation in dimension one

Krzysztof Ciepliński, Zbigniew Leśniak (2013)

Banach Center Publications

In this paper, recent results on the existence and uniqueness of (continuous and homeomorphic) solutions φ of the equation φ ∘ f = g ∘ φ (f and g are given self-maps of an interval or the circle) are surveyed. Some applications of these results as well as the outcomes concerning systems of such equations are also presented.

On cusps and flat tops

Neil Dobbs (2014)

Annales de l’institut Fourier

Non-invertible Pesin theory is developed for a class of piecewise smooth interval maps which may have unbounded derivative, but satisfy a property analogous to C 1 + ϵ . The critical points are not required to verify a non-flatness condition, so the results are applicable to C 1 + ϵ maps with flat critical points. If the critical points are too flat, then no absolutely continuous invariant probability measure can exist. This generalises a result of Benedicks and Misiurewicz.

On local aspects of topological weak mixing in dimension one and beyond

Piotr Oprocha, Guohua Zhang (2011)

Studia Mathematica

We introduce the concept of weakly mixing sets of order n and show that, in contrast to weak mixing of maps, a weakly mixing set of order n does not have to be weakly mixing of order n + 1. Strictly speaking, we construct a minimal invertible dynamical system which contains a non-trivial weakly mixing set of order 2, whereas it does not contain any non-trivial weakly mixing set of order 3. In dimension one this difference is not that much visible, since we prove that every continuous...

On Pawlak's problem concerning entropy of almost continuous functions

Tomasz Natkaniec, Piotr Szuca (2010)

Colloquium Mathematicae

We prove that if f: → is Darboux and has a point of prime period different from 2 i , i = 0,1,..., then the entropy of f is positive. On the other hand, for every set A ⊂ ℕ with 1 ∈ A there is an almost continuous (in the sense of Stallings) function f: → with positive entropy for which the set Per(f) of prime periods of all periodic points is equal to A.

On the classes of Lipschitz and smooth conjugacies of unimodal maps

Waldemar Pałuba (2004)

Fundamenta Mathematicae

Under very mild assumptions, any Lipschitz continuous conjugacy between the closures of the postcritical sets of two C¹-unimodal maps has a derivative at the critical point, and also on a dense set of its preimages. In a more restrictive situation of infinitely renormalizable maps of bounded combinatorial type the Lipschitz condition automatically implies the C¹-smoothness of the conjugacy. Here the critical degree can be any real number α > 1.

On the classification of inverse limits of tent maps

Louis Block, Slagjana Jakimovik, Lois Kailhofer, James Keesling (2005)

Fundamenta Mathematicae

Let f s and f t be tent maps on the unit interval. In this paper we give a new proof of the fact that if the critical points of f s and f t are periodic and the inverse limit spaces ( I , f s ) and ( I , f t ) are homeomorphic, then s = t. This theorem was first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer. Using the techniques of the paper we are also able to identify certain isotopies between homeomorphisms on the inverse limit space.

On the continuity of the pressure for monotonic mod one transformations

Peter Raith (2000)

Commentationes Mathematicae Universitatis Carolinae

If f : [ 0 , 1 ] is strictly increasing and continuous define T f x = f ( x ) ( mod 1 ) . A transformation T ˜ : [ 0 , 1 ] [ 0 , 1 ] is called ε -close to T f , if T ˜ x = f ˜ ( x ) ( mod 1 ) for a strictly increasing and continuous function f ˜ : [ 0 , 1 ] with f ˜ - f < ε . It is proved that the topological pressure p ( T f , g ) is lower semi-continuous, and an upper bound for the jumps up is given. Furthermore the continuity of the maximal measure is shown, if a certain condition is satisfied. Then it is proved that the topological pressure is upper semi-continuous for every continuous function g : [ 0 , 1 ] , if and only if 0 is...

On the formal first cocycle equation for iteration groups of type II

Harald Fripertinger, Ludwig Reich (2012)

ESAIM: Proceedings

Let x be an indeterminate over ℂ. We investigate solutions α ( s , x ) = n 0 α n ( s ) x n , αn : ℂ → ℂ, n ≥ 0, of the first cocycle equation α ( s + t , x ) = α ( s , x ) α t , F ( s , x ) , s , t , ( Co 1 ) in ℂ [[x]], the ring of formal power series over ℂ, where (F(s,x))s ∈ ℂ is an iteration group of type II, i.e. it is a solution of the translation equation F ( s + t , x ) = F ( s , F ( t , x ) ) , s , t , ( T ) of the form F(s,x) ≡ x + ck(s)xk mod xk+1, where k ≥ 2 and ck ≠ 0 is necessarily an additive function. It is easy to prove that the coefficient functions αn(s) of α ( s , x ) = 1 + n 1 α n ( s ) x n are polynomials in ck(s).It is possible to replace...

On the rate of convergence to the neutral attractor of a family of one-dimensional maps

T. Nowicki, M. Sviridenko, G. Świrszcz, S. Winograd (2009)

Fundamenta Mathematicae

For a family of maps f d ( p ) = 1 - ( 1 - p / d ) d , d ∈ [2,∞], p ∈ [0,1]. we analyze the speed of convergence (including constants) to the globally attracting neutral fixed point p = 0. The study is motivated by a problem in the optimization of routing. The aim of this paper is twofold: (1) to extend the usage of dynamical systems to unexplored areas of algorithms and (2) to provide a toolbox for a precise analysis of the iterates near a non-degenerate neutral fixed point.

On the topological dynamics and phase-locking renormalization of Lorenz-like maps

Lluis Alsedà, Antonio Falcó (2003)

Annales de l’institut Fourier

The aim of this paper is twofold. First we give a characterization of the set of kneading invariants for the class of Lorenz–like maps considered as a map of the circle of degree one with one discontinuity. In a second step we will consider the subclass of the Lorenz– like maps generated by the class of Lorenz maps in the interval. For this class of maps we give a characterization of the set of renormalizable maps with rotation interval degenerate to a rational number, that is, of phase–locking...

Organizing centers in parameter space of discontinuous 1D maps. The case of increasing/decreasing branches

Laura Gardini, Viktor Avrutin, Michael Schanz, Albert Granados, Iryna Sushko (2012)

ESAIM: Proceedings

This work contributes to classify the dynamic behaviors of piecewise smooth systems in which border collision bifurcations characterize the qualitative changes in the dynamics. A central point of our investigation is the intersection of two border collision bifurcation curves in a parameter plane. This problem is also associated with the continuity breaking in a fixed point of a piecewise smooth map. We will relax the hypothesis needed in [4] where...

Currently displaying 1 – 16 of 16

Page 1