Page 1

Displaying 1 – 8 of 8

Showing per page

Parapuzzle of the multibrot set and typical dynamics of unimodal maps

Artur Avila, Mikhail Lyubich, Weixiao Shen (2011)

Journal of the European Mathematical Society

We study the parameter space of unicritical polynomials f c : z z d + c . For complex parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.

Period doubling, entropy, and renormalization

Jun Hu, Charles Tresser (1998)

Fundamenta Mathematicae

We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.

Periodic billiard orbits in right triangles

Serge Troubetzkoy (2005)

Annales de l’institut Fourier

There is an open set of right triangles such that for each irrational triangle in this set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique nonsingular perpendicular billiard orbit which is not periodic, and (iii) the perpendicular periodic orbits fill the corresponding invariant surface.

Position dependent random maps in one and higher dimensions

Wael Bahsoun, Paweł Góra (2005)

Studia Mathematica

A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.

Currently displaying 1 – 8 of 8

Page 1