The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study the parameter space of unicritical polynomials . For complex parameters, we prove that for Lebesgue almost every , the map is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every , the map is either hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.
We show that in any family of stunted sawtooth maps, the set of maps whose set of periods is the set of all powers of 2 has no interior point. Similar techniques then allow us to show that, under mild assumptions, smooth multimodal maps whose set of periods is the set of all powers of 2 are infinitely renormalizable with the diameters of all periodic intervals going to zero as the period goes to infinity.
There is an open set of right triangles such that for each irrational triangle in this
set (i) periodic billiards orbits are dense in the phase space, (ii) there is a unique
nonsingular perpendicular billiard orbit which is not periodic, and (iii) the
perpendicular periodic orbits fill the corresponding invariant surface.
We use Pesin theory to study possible equilibrium measures for a broad class of piecewise monotone maps of the interval and a broad class of potentials.
A random map is a discrete-time dynamical system in which one of a number of transformations is randomly selected and applied on each iteration of the process. We study random maps with position dependent probabilities on the interval and on a bounded domain of ℝⁿ. Sufficient conditions for the existence of an absolutely continuous invariant measure for a random map with position dependent probabilities on the interval and on a bounded domain of ℝⁿ are the main results.
Currently displaying 1 –
8 of
8