Calcul de la dynamique de transformations linéaires contractantes mod 1 et arbre de Farey
We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, Stoch. Dynamics3 (2003) 477–497]. An application to parametric estimation by random sampling is also provided.
Soit un difféomorphisme lisse de fixant seulement l’origine, et son centralisateur dans le groupe des difféomorphismes . Des résultat classiques de Kopell et Szekeres montrent que est toujours un groupe à un paramètre. En revanche, Sergeraert a construit un dont le centralisateur est réduit au groupe des itérés de . On présente ici le résultat principal de [3] : peut en fait être un sous-groupe propre et non-dénombrable (donc dense) de .
In this paper we study the commutativity property for topological sequence entropy. We prove that if is a compact metric space and are continuous maps then for every increasing sequence if , and construct a counterexample for the general case. In the interim, we also show that the equality is true if but does not necessarily hold if is an arbitrary compact metric space.
We combine some results from the literature to give examples of completely mixing interval maps without limit measure.
Let denote the family of continuous maps from an interval into itself such that (1) ; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of . The main aim of this paper is to compute explicitly the topological sequence entropy of any map respect to the sequence .
We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.