Persistence of homoclinic tangencies for area-preserving maps
Kočergin introduced in 1975 a class of smooth flows on the two torus that are mixing. When these flows have one fixed point, they can be viewed as special flows over an irrational rotation of the circle, with a ceiling function having a power-like singularity. Under a Diophantine condition on the rotation’s angle, we prove that the special flows actually have a -speed of mixing, for some .
Soit un homéomorphisme du plan qui préserve l’orientation et qui a un point périodique de période . Nous montrons qu’il existe un point fixe tel que le nombre d’enlacement de et ne soit pas nul. En d’autres termes, le nombre de rotation de l’orbite de dans l’anneau est un élément non nul de . Ceci donne une réponse positive à une question posée par John Franks.