Bifurcations in One Dimension. II. A Versal Model for Bifurcations.
Previous Page 2
Leo Jonker, David Rand (1981)
Inventiones mathematicae
Cristina Chiralt, Beatriz Campos, Pura Vindel (2011)
Mathematica Bohemica
In this paper we show that, for a given value of the energy, there is a bifurcation for the two imaginary centers problem. For this value not only the configuration of the orbits changes but also a change in the topology of the phase space occurs.
Sadovský, Zoltán (1986)
Equadiff 6
Pavol Brunovský, Milan Medveď (1982)
Pokroky matematiky, fyziky a astronomie
A. Katok, D. Bernstein (1987)
Inventiones mathematicae
Toni, B. (1998)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Previous Page 2