Page 1

Displaying 1 – 3 of 3

Showing per page

First steps in stable Hamiltonian topology

Kai Cieliebak, Evgeny Volkov (2015)

Journal of the European Mathematical Society

In this paper we study topological properties of stable Hamiltonian structures. In particular, we prove the following results in dimension three: The space of stable Hamiltonian structures modulo homotopy is discrete; stable Hamiltonian structures are generically Morse-Bott (i.e. all closed orbits are Bott nondegenerate) but not Morse; the standard contact structure on S 3 is homotopic to a stable Hamiltonian structure which cannot be embedded in 4 . Moreover, we derive a structure theorem for stable...

Fredholm theory and transversality for the parametrized and for the S 1 -invariant symplectic action

Frédéric Bourgeois, Alexandru Oancea (2010)

Journal of the European Mathematical Society

We study the parametrized Hamiltonian action functional for finite-dimensional families of Hamiltonians. We show that the linearized operator for the L 2 -gradient lines is Fredholm and surjective, for a generic choice of Hamiltonian and almost complex structure. We also establish the Fredholm property and transversality for generic S 1 -invariant families of Hamiltonians and almost complex structures, parametrized by odd-dimensional spheres. This is a foundational result used to define S 1 -equivariant...

Currently displaying 1 – 3 of 3

Page 1