Problèmes elliptiques, surfaces de Riemann et structures symplectiques
Sur une variété analytique paracompacte de dimension 2, on considère un opérateur différentiel à symbole principal analytique vérifiant la condition de Nirenberg et Treves. En ajoutant une nouvelle variable et en utilisant des estimations a priori de type Carleman, on montre qu’il y a propagation des singularités pour , dans , le long des feuilles intégrales du système différentiel engendré par les champs hamiltoniens de Re et Im.