La dynamique au voisinage d'un point fixe elliptique conservatif : de Poincaré et Birkhoff à Aubry et Mather
A toute deux-forme fermée, sur une variété connexe, on associe une famille d’extensions centrales du groupe de ses automorphismes par son tore des périodes. On discute ensuite quelques propriétés de cette construction.
Regular Poisson structures with fixed characteristic foliation F are described by means of foliated symplectic forms. Associated to each of these structures, there is a class in the second group of foliated cohomology H2(F). Using a foliated version of Moser's lemma, we study the isotopy classes of these structures in relation with their cohomology class. Explicit examples, with dim F = 2, are described.
We show that locally conformal cosymplectic manifolds may be seen as generalized phase spaces of time-dependent Hamiltonian systems. Thus we extend the results of I. Vaisman for the time-dependent case.