Displaying 221 – 240 of 418

Showing per page

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Kermack-McKendrick epidemic model revisited

Josef Štěpán, Daniel Hlubinka (2007)

Kybernetika

This paper proposes a stochastic diffusion model for the spread of a susceptible-infective-removed Kermack–McKendric epidemic (M1) in a population which size is a martingale N t that solves the Engelbert–Schmidt stochastic differential equation (). The model is given by the stochastic differential equation (M2) or equivalently by the ordinary differential equation (M3) whose coefficients depend on the size N t . Theorems on a unique strong and weak existence of the solution to (M2) are proved and computer...

Kermack-McKendrick epidemics vaccinated

Jakub Staněk (2008)

Kybernetika

This paper proposes a deterministic model for the spread of an epidemic. We extend the classical Kermack–McKendrick model, so that a more general contact rate is chosen and a vaccination added. The model is governed by a differential equation (DE) for the time dynamics of the susceptibles, infectives and removals subpopulation. We present some conditions on the existence and uniqueness of a solution to the nonlinear DE. The existence of limits and uniqueness of maximum of infected individuals are...

Limiting Behavior for an Iterated Viscosity

Ciprian Foias, Michael S. Jolly, Oscar P. Manley (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The behavior of an ordinary differential equation for the low wave number velocity mode is analyzed. This equation was derived in [5] by an iterative process on the two-dimensional Navier-Stokes equations (NSE). It resembles the NSE in form, except that the kinematic viscosity is replaced by an iterated viscosity which is a partial sum, dependent on the low-mode velocity. The convergence of this sum as the number of iterations is taken to be arbitrarily large is explored. This leads to a limiting...

Mean stability of a stochastic difference equation

Viorica Mariela Ungureanu, Sui Sun Cheng (2008)

Annales Polonici Mathematici

A simple personal saving model with interest rate based on random fluctuation of national growth rate is considered. We establish connections between the mean stochastic stability of our model and the deterministic stability of related partial difference equations. Then the asymptotic behavior of our stochastic model is studied. Although the model is simple, the techniques for obtaining its properties are not, and we make use of the theory of abstract Banach algebras and weighted spaces. It is hoped...

Mean-Field Optimal Control

Massimo Fornasier, Francesco Solombrino (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We introduce the concept of mean-field optimal control which is the rigorous limit process connecting finite dimensional optimal control problems with ODE constraints modeling multi-agent interactions to an infinite dimensional optimal control problem with a constraint given by a PDE of Vlasov-type, governing the dynamics of the probability distribution of interacting agents. While in the classical mean-field theory one studies the behavior of a large number of small individuals freely interacting...

Model of AIDS-related tumour with time delay

Marek Bodnar, Urszula Foryś, Zuzanna Szymańska (2009)

Applicationes Mathematicae

We present and compare two simple models of immune system and cancer cell interactions. The first model reflects simple cancer disease progression and serves as our "control" case. The second describes the progression of a cancer disease in the case of a patient infected with the HIV-1 virus.

Currently displaying 221 – 240 of 418