Displaying 21 – 40 of 151

Showing per page

A generalization of Zeeman’s family

Michał Sierakowski (1999)

Fundamenta Mathematicae

E. C. Zeeman [2] described the behaviour of the iterates of the difference equation x n + 1 = R ( x n , x n - 1 , . . . , x n - k ) / Q ( x n , x n - 1 , . . . , x n - k ) , n ≥ k, R,Q polynomials in the case k = 1 , Q = x n - 1 and R = x n + α , x 1 , x 2 positive, α nonnegative. We generalize his results as well as those of Beukers and Cushman on the existence of an invariant measure in the case when R,Q are affine and k = 1. We prove that the totally invariant set remains residual when the coefficients vary.

A model of cardiac tissue as an excitable medium with two interacting pacemakers having refractory time

Alexander Loskutov, Sergei Rybalko, Ekaterina Zhuchkova (2003)

Banach Center Publications

A quite general model of the nonlinear interaction of two impulse systems describing some types of cardiac arrhythmias is developed. Taking into account a refractory time the phase locking phenomena are investigated. Effects of the tongue splitting and their interweaving in the parametric space are found. The results obtained allow us to predict the behavior of excitable systems with two pacemakers depending on the type and intensity of their interaction and the initial phase.

Currently displaying 21 – 40 of 151