Displaying 61 – 80 of 202

Showing per page

Hukuhara's differentiable iteration semigroups of linear set-valued functions

Andrzej Smajdor (2004)

Annales Polonici Mathematici

Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. A family F t : t 0 of continuous linear set-valued functions F t : K c c ( K ) is a differentiable iteration semigroup with F⁰(x) = x for x ∈ K if and only if the set-valued function Φ ( t , x ) = F t ( x ) is a solution of the problem D t Φ ( t , x ) = Φ ( t , G ( x ) ) : = Φ ( t , y ) : y G ( x ) , Φ(0,x) = x, for x ∈ K and t ≥ 0, where D t Φ ( t , x ) denotes the Hukuhara derivative of Φ(t,x) with respect to t and G ( x ) : = l i m s 0 + ( F s ( x ) - x ) / s for x ∈ K.

Hyers-Ulam stability for a nonlinear iterative equation

Bing Xu, Weinian Zhang (2002)

Colloquium Mathematicae

We discuss the Hyers-Ulam stability of the nonlinear iterative equation G ( f n ( x ) , . . . , f n k ( x ) ) = F ( x ) . By constructing uniformly convergent sequence of functions we prove that this equation has a unique solution near its approximate solution.

Iterated quasi-arithmetic mean-type mappings

Paweł Pasteczka (2016)

Colloquium Mathematicae

We work with a fixed N-tuple of quasi-arithmetic means M , . . . , M N generated by an N-tuple of continuous monotone functions f , . . . , f N : I (I an interval) satisfying certain regularity conditions. It is known [initially Gauss, later Gustin, Borwein, Toader, Lehmer, Schoenberg, Foster, Philips et al.] that the iterations of the mapping I N b ( M ( b ) , . . . , M N ( b ) ) tend pointwise to a mapping having values on the diagonal of I N . Each of [all equal] coordinates of the limit is a new mean, called the Gaussian product of the means M , . . . , M N taken on b. We effectively...

Markov operators acting on Polish spaces

Tomasz Szarek (1997)

Annales Polonici Mathematici

We prove a new sufficient condition for the asymptotic stability of Markov operators acting on measures. This criterion is applied to iterated function systems.

Markov operators on the space of vector measures; coloured fractals

Karol Baron, Andrzej Lasota (1998)

Annales Polonici Mathematici

We consider the family 𝓜 of measures with values in a reflexive Banach space. In 𝓜 we introduce the notion of a Markov operator and using an extension of the Fortet-Mourier norm we show some criteria of the asymptotic stability. Asymptotically stable Markov operators can be used to construct coloured fractals.

Matrix refinement equations: Continuity and smoothness

Xing-Gang He, Chun-Tai Liu (2007)

Czechoslovak Mathematical Journal

In this paper we give some criteria for the existence of compactly supported C k + α -solutions ( k is an integer and 0 α < 1 ) of matrix refinement equations. Several examples are presented to illustrate the general theory.

Currently displaying 61 – 80 of 202