Eine neue Funktionalgleichung zur Bestimmung elliptischer Integrale erster Gattung und ihrer Umkehrungen.
Page 1
W. Dreyer (1987)
Elemente der Mathematik
Gordji, M.Eshaghi, Ramezani, M. (2010)
Annals of Functional Analysis (AFA) [electronic only]
Palaniappan Kannappan (1995)
Mathware and Soft Computing
Among normal linear spaces, the inner product spaces (i.p.s.) are particularly interesting. Many characterizations of i.p.s. among linear spaces are known using various functional equations. Three functional equations characterizations of i.p.s. are based on the Frchet condition, the Jordan and von Neumann identity and the Ptolemaic inequality respectively. The object of this paper is to solve generalizations of these functional equations.
Murugan, V., Subrahmanyam, P.V. (2005)
Fixed Point Theory and Applications [electronic only]
Péics, Hajnalka (2003)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
A. Cannizzo (1990)
Elemente der Mathematik
Page 1