Pexider functional equations -- their fuzzy analogs.
The concept of characteristic interval for piecewise monotone functions is introduced and used in the study of their iterative roots on a closed interval.
Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation in the class of probability distribution functions.
Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be a mapping strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We discuss the problem of existence of probability distribution solutions of the general linear equation . We extend our uniqueness-type theorems obtained in Ann. Polon. Math. 95 (2009), 103-114.