The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The connection between the functional inequalities
and
is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.
An invariance formula in the class of generalized p-variable quasiarithmetic means is provided. An effective form of the limit of the sequence of iterates of mean-type mappings of this type is given. An application to determining functions which are invariant with respect to generalized quasiarithmetic mean-type mappings is presented.
Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
Let I be a real interval, J a subinterval of
I, p ≥ 2 an integer number, and
M1, ... , Mp : Ip → I
the continuous means. We consider the problem of invariance of the graphs of functions
ϕ : Jp−1 → I
with respect to the mean-type mapping
M = (M1, ... , Mp).Applying a result on the existence and uniqueness of an M -invariant mean
[7], we prove that if the graph of a continuous function
ϕ : Jp−1 → I
...
This paper shows a simple construction of continuous involutions of real intervals in terms of continuous even functions. We also study smooth involutions defined by symmetric equations. Finally, we review some applications, in particular a characterization of isochronous potentials by means of smooth involutions.
Currently displaying 1 –
6 of
6