Iterative Pexider equation modulo a subset.
Mariusz Bajger (1997)
Aequationes mathematicae
C.T. Ng (1990)
Aequationes mathematicae
B. Zalar (1997)
Aequationes mathematicae
L. Molnár (1997)
Aequationes mathematicae
Dilian Yang (2005)
Colloquium Mathematicae
Motivated by Problem 2 in [2], Jordan *-derivation pairs and n-Jordan *-mappings are studied. From the results on these mappings, an affirmative answer to Problem 2 in [2] is given when E = F in (1) or when 𝓐 is unital. For the general case, we prove that every Jordan *-derivation pair is automatically real-linear. Furthermore, a characterization of a non-normal prime *-ring under some mild assumptions and a representation theorem for quasi-quadratic functionals are provided.
Gharetapeh, S.Kaboli, Talebi, S., Park, Choonkil, Gordji, Madjid Eshaghi (2011)
The Journal of Nonlinear Sciences and its Applications
Bruce R. Ebanks (1982)
Stochastica
The functional equation to which the title refers is:F(x,y) + F(xy,z) = F(x,yz) + F(y,z),where x, y and z are in a commutative semigroup S and F: S x S --> X with (X,+) a divisible abelian group (Divisibility means that for any y belonging to X and natural number n there exists a (unique) solution x belonging to X to nx = y).
Henri Buchwalter (1986)
Mathematische Annalen
Zenon Moszner, Józef Tabor (1976)
Annales Polonici Mathematici
Józef Drewniak, Józef Kalinowski (1976)
Annales Polonici Mathematici
Józef Drewniak, Józef Kalinowski (1977)
Annales Polonici Mathematici
Ludwig Reich, Jens Schwaiger (1980)
Aequationes mathematicae
Jung, Soon-Mo, Kim, Byungbae (2003)
International Journal of Mathematics and Mathematical Sciences
Zbigniew Gajda (1990)
Annales Polonici Mathematici
J. ACZÉL (1971)
Aequationes mathematicae
Jung, Soon-Mo, Kim, Byungbae (2005)
International Journal of Mathematics and Mathematical Sciences
Risteski, Ice B. (2002)
International Journal of Mathematics and Mathematical Sciences
László Székelyhidi (1991)
Aequationes mathematicae
GERALD L. ITZKOWITZ (1971)
Aequationes mathematicae
GERALD L. ITZKOWITZ (1971)
Aequationes mathematicae