Equations fonctionnelles et estimations de normes de matrices.
This paper is concerned with a class of nonlinear difference inequalities which include many different classes of difference inequalities and equations as special cases. By means of a Riccati type transformation, necessary and sufficient conditions for the existence of eventually positive solutions and positive nonincreasing solutions are obtained. Various type of comparison theorems are also derived as applications, which extends many theorems in the literature.
There are many types of midconvexities, for example Jensen convexity, t-convexity, (s,t)-convexity. We provide a uniform framework for all the above mentioned midconvexities by considering a generalized middle-point map on an abstract space X. We show that we can define and study the basic convexity properties in this setting.
The connection between the functional inequalities and is investigated, where D is a convex subset of a linear space, f: D → ℝ, α H;α J: D-D → ℝ are even functions, λ ∈ [0; 1], and ρ: [0; 1] →ℝ+ is an integrable nonnegative function with ∫01 ρ(t) dt = 1.